352 research outputs found

    Active appearance models

    Full text link

    Towards Pose-Invariant 2D Face Classification for Surveillance

    Get PDF
    A key problem for "face in the crowd" recognition from existing surveillance cameras in public spaces (such as mass transit centres) is the issue of pose mismatches between probe and gallery faces. In addition to accuracy, scalability is also important, necessarily limiting the complexity of face classification algorithms. In this paper we evaluate recent approaches to the recognition of faces at relatively large pose angles from a gallery of frontal images and propose novel adaptations as well as modifications. Specifically, we compare and contrast the accuracy, robustness and speed of an Active Appearance Model (AAM) based method (where realistic frontal faces are synthesized from non-frontal probe faces) against bag-of-features methods (which are local feature approaches based on block Discrete Cosine Transforms and Gaussian Mixture Models). We show a novel approach where the AAM based technique is sped up by directly obtaining pose-robust features, allowing the omission of the computationally expensive and artefact producing image synthesis step. Additionally, we adapt a histogram-based bag-of-features technique to face classification and contrast its properties to a previously proposed direct bag-of-features method. We also show that the two bag-of-features approaches can be considerably sped up, without a loss in classification accuracy, via an approximation of the exponential function. Experiments on the FERET and PIE databases suggest that the bag-of-features techniques generally attain better performance, with significantly lower computational loads. The histogram-based bag-of-features technique is capable of achieving an average recognition accuracy of 89% for pose angles of around 25 degrees

    Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences

    Get PDF
    We propose a fully automatic method for fitting a 3D morphable model to single face images in arbitrary pose and lighting. Our approach relies on geometric features (edges and landmarks) and, inspired by the iterated closest point algorithm, is based on computing hard correspondences between model vertices and edge pixels. We demonstrate that this is superior to previous work that uses soft correspondences to form an edge-derived cost surface that is minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic

    Probabilistic Atlas Based Segmentation Using Affine Moment Descriptors and Graph-Cuts

    Get PDF
    We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation
    • …
    corecore